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A Theorems and Proof
In the following, we prove the convergence of the GCPG Q = σ(Θ).

Assumption 1 Time-series i sampled at time t, denoted as xi,t ∈ R is generated with the
Structural Causal Model (SCM), i.e., xi,t = fi(x1,t−τ :t−1,x2,t−τ :t−1, ...,xN,t−τ :t−1) + ei,t, i =
1, 2, ..., N. Where τ denotes the maximal time lag.

Assumption 2 Component i of CDNN fϕi
approximate generative function fi with an error

smaller than eNN,i.

This assumption is satisfied if we leverage the Universal Approximation Theorem of Neural
Networks [1]. It is reasonable since we can learn the dynamics under time-series well with our
deep neural network.

Assumption 3 ∃λ0,∀i, j = 1, ..., N,
∣∣fϕj (X⊙ s:,j|Gk=1)− fϕj (X⊙ s:,j|Gk=0)

∣∣ ≤ λ0 if and only if
group XGk

Granger does not cause xj, where s:,j|j=r is vector s:,j with element sij = r, ∀i ∈ Gk.

Here we define fϕj
(X⊙ s:,j)

∆
= fϕj

({x1 · s1j , ...,xN · sNj}) (note that this is not the standard
definition of Hadamard product, because X is 2-dimensional). This assumption can be regarded
as a relaxation of Definition 2, i.e.,

|fj({XGi
,X\XGi

})− fj({0,X\XGi
})| ≤ λ0 (1)

With these assumptions, the grouping version of Theorem 1 in [2] can be formulated as

Theorem 1 There exists a penalty coefficient λ, s.t. GCPG element qkj decrease towards 0 if
group XGk

does not Granger cause time-series j, qkj increase towards 1 if group XGk
Granger

causes time series j.

Proof. The learned CPG M̃ = GTQ, and m̃ij = gT
:,iq:,j . Since each time-series is and

can only be allocated to one group, we get

s:,j = GT s′:,j , s′:,j ∼ Ber(σ(θ:,j)) (2)
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The loss function in Causal Discovery Stage is

Lgraph =
1

M

N∑
j=1

T∑
t=1

∥∥fϕj (X⊙ s:,j)− xj,t

∥∥
2
· oj,t + λ ∥σ(Θ)∥1 (3)

where M =
∑N

j=1

∑T
t=1 oj,t. By calculating the gradients of ES [Lgraph] over θij , we get

∂

∂θkj
ES [Lgraph] =

1

M

∂

∂θkj

T∑
t=1

ES

N∑
j=1

∥∥fϕj
(X⊙ s:,j)− xj,t

∥∥
2
· oj,t + λ ∥σ(Θ)∥1 (4)

=
1

M

T∑
t=1

E{sij}i/∈Gk

∂

∂θkj
E{sij}i∈Gk

∥∥fϕj
(X⊙ s:,j)− xj,t

∥∥
2
· oj,t + λσ′(θkj) (5)

=
1

M

T∑
t=1

E{sij}i/∈Gk

∂

∂θkj

(
σ(θkj)

∥∥fϕj (X⊙ s:,j|Gk=1)− xj,t

∥∥
2
· oj,t (6)

+ (1− σ(θkj))
∥∥fϕj

(X⊙ s:,j|Gk=0)− xj,t

∥∥
2
· oj,t

)
+ λσ′(θkj) (7)

=
1

M

T∑
t=1

E{sij}i/∈Gk
σ′(θkj)

(
λ+ ∥eNN,i + et,j∥2 · oj,t (8)

−
∥∥fϕj (X⊙ s:,j|Gk=0)− xj,t

∥∥
2
· oj,t

)
(9)

≈ 1

M

T∑
t=1

E{sij}i/∈Gk
σ′(θkj)

(
λ+ e2t,j · oj,t − (∆Gk,j + et,j)

2 · oj,t
)

(10)

=
1

M

T∑
t=1

E{sij}i/∈Gk
σ′(θkj)

(
λ−

(
2∆Gk,jet,j +∆2

Gk,j

)
· oj,t

)
(11)

where fϕj (·) is the MPGNN prediction module, s:,j|Gk=r is generated with (2), only with
skj = r. And we define ∆Gk,j as the causal effects of group Gk, i.e.,

∆Gk,j = fϕj
(X⊙ s:,j|Gk=1)− fϕj

(X⊙ s:,j|Gk=0) (12)

We achieve (4) by changing the order of summation, (5) by eliminating irrelevant terms in
CDNN and splitting the summation of sij where i is in or not in group Gk, (6, 7) by calculating
the expectation of Bernoulli distribution, (9) by ignoring eNN,j . When we treat observation mask
oj,t and noise ej,t as random variables, we get the expectation of the derivatives

Eoj,tEej,t

∂

∂θkj
ES [Lgraph] =

1

M

T∑
t=1

E{sij}i/∈Gk
Eoj,tEej,tσ

′(θkj)
(
λ−

(
2∆Gk,jet,j +∆2

Gk,j

)
· oj,t

)
(13)

=
1

M

T∑
t=1

E{sij}i/∈Gk
σ′(θkj)

(
λ−∆2

Gk,j
· p

)
(14)

Where p is the missing probability. σ′(·) is the derivative of the sigmoid function and is always
positive.

If group Gk does not Granger cause j, then |∆Gk,j | ≤ λ0 (Assumption 3). Then setting
λ = pλ2

0 would make (14) expected to be positive, and θkj decreases towards −∞, qkj = σ(θkj)
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decreases towards 0. Similarly, If group Gk Granger cause j, (14) is expected to be negative and
qkj = σ(θkj) increases towards 1.

B Additional Experiments

B.1 Graph Density

VAR datasets are generated with various graph densities, i.e., ρ =
∑N

i=1

∑N
j=1 aij/N

2 where A is
the adjacency matrix of the causal graph. To further demonstrate our performance in different
settings, we perform comparison experiments on VAR with various graph densities, shown in
Table 1. We can observe that, the performances of all approaches degrade significantly when
graph density increases. However, our CUTS+ still beats all baselines on all graph densities.

Table 1: Performance comparison of CUTS+ on VAR (N = 128) with various graph densities
ρ = 0.01, 0.03, 0.05, 0.07, 0.1. The missingness is set as RM with p = 0.3.

Method Imput. VAR with RM (p = 0.3)
ρ = 0.01 ρ = 0.03 ρ = 0.05 ρ = 0.07 ρ = 0.1

NGC ZOH 1.0000 ± 0.0000 0.8268 ± 0.0103 0.6492 ± 0.0112 0.5769 ± 0.0104 0.5443 ± 0.0089

TimesNet 0.9819 ± 0.0046 0.7947 ± 0.0165 0.6115 ± 0.0084 0.5303 ± 0.0066 0.5133 ± 0.0058

eSRU ZOH 0.9127 ± 0.0118 0.7007 ± 0.0114 0.5958 ± 0.0041 0.5530 ± 0.0074 0.5324 ± 0.0043

TimesNet 0.8052 ± 0.0193 0.6118 ± 0.0143 0.5359 ± 0.0095 0.5127 ± 0.0066 0.5093 ± 0.0050

SCGL ZOH 1.0000 ± 0.0000 0.6628 ± 0.0031 0.5753 ± 0.0085 0.5707 ± 0.0077 0.5438 ± 0.0076

TimesNet 1.0000 ± 0.0000 0.6510 ± 0.0113 0.5792 ± 0.0065 0.5642 ± 0.0098 0.5394 ± 0.0032

NGM 0.7425 ± 0.1035 0.5625 ± 0.0339 0.5327 ± 0.0156 0.5335 ± 0.0121 0.5223 ± 0.0078

CUTS 0.9998 ± 0.0001 0.9376 ± 0.0086 0.7470 ± 0.0185 0.5655 ± 0.0145 0.5315 ± 0.0117

CUTS w C2FD 1.0000 ± 0.0000 0.9638 ± 0.0069 0.7712 ± 0.0195 0.5753 ± 0.0073 0.5363 ± 0.0068

CUTS+ 1.0000 ± 0.0000 0.9907 ± 0.0008 0.8630 ± 0.0111 0.6460 ± 0.0103 0.5844 ± 0.0098

B.2 Scalability
In the main text, we show the scalability of our CUTS+ on VAR and Lorenz-96 datasets. We
show more experiments here on VAR and Lorenz-96 with N = 16, 32, 64, 128, 256, 512 on 4
different data missing scenarios and without data missing. The results are in Table 2 and 3. We
observe good scalability with or without data missing when N increases and the performance
only degrades clearly when N = 512 or p = 0.6.

B.3 Robustness
In Table 6 and 5, we add experiments to show that the performance is robust across a range of
parameters, e.g. λ,Ng and noise, e.g., additive noise in VAR and chaotic constant F in Lorenz-96.

B.4 Quantitative Comparison on AQI Dataset
Although we do not have access to the ground-truth causal graph because of the extremely
complex atmosphere physics in AQI dataset, the geometrical distances are very closely related to
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Table 2: Performance comparison of CUTS+ on VAR datasets with N = 16, 32, 64, 128, 256, 512.
The data missing is set as RM with p = 0, 0.3, 0.6.

N
VAR with RM VAR with RBM VAR

p = 0.3 p = 0.6 pblk = 0.15% pblk = 0.3% No missing

16 0.9917 ± 0.0034 0.9639 ± 0.0146 0.9931 ± 0.0038 0.9887 ± 0.0064 0.9957 ± 0.0016

32 0.9916 ± 0.0028 0.9572 ± 0.0041 0.9942 ± 0.0016 0.9923 ± 0.0023 0.9977 ± 0.0012

64 0.9911 ± 0.0023 0.9577 ± 0.0094 0.9945 ± 0.0018 0.9931 ± 0.0020 0.9972 ± 0.0014

128 0.9907 ± 0.0008 0.9569 ± 0.0051 0.9939 ± 0.0018 0.9912 ± 0.0025 0.9971 ± 0.0005

256 0.9893 ± 0.0031 0.9557 ± 0.0035 0.9928 ± 0.0010 0.9903 ± 0.0018 0.9960 ± 0.0014

512 0.9329 ± 0.0043 0.8496 ± 0.0043 0.9485 ± 0.0034 0.9403 ± 0.0028 0.9647 ± 0.0039

Table 3: Performance comparison of CUTS+ on Lorenz-96 datasets with N =
16, 32, 64, 128, 256, 512. The data missing is set as RM with p = 0, 0.3, 0.6.

N
Lorenz-96 with RM Lorenz-96 with RBM Lorenz-96

p = 0.3 p = 0.6 pblk = 0.15% pblk = 0.3% No missing

16 0.9999 ± 0.0001 0.9975 ± 0.0012 1.0000 ± 0.0000 0.9999 ± 0.0002 1.0000 ± 0.0000

32 0.9998 ± 0.0001 0.9962 ± 0.0023 1.0000 ± 0.0000 0.9999 ± 0.0000 1.0000 ± 0.0000

64 0.9998 ± 0.0002 0.9915 ± 0.0033 0.9997 ± 0.0002 0.9997 ± 0.0003 1.0000 ± 0.0000

128 0.9992 ± 0.0002 0.9950 ± 0.0011 0.9994 ± 0.0002 0.9992 ± 0.0002 0.9998 ± 0.0001

256 0.9984 ± 0.0002 0.9911 ± 0.0017 0.9989 ± 0.0002 0.9986 ± 0.0002 0.9997 ± 0.0000

512 0.9969 ± 0.0005 0.9838 ± 0.0007 0.9975 ± 0.0002 0.9964 ± 0.0006 0.9990 ± 0.0002

the real causal relationships. To show the quantitative result, we take the distance matrix as the
ground truth graph, which is calculated as

dij ∝ 1/dist(i, j) (15)

After selecting a threshold to binarize the ground truth graph, we perform experiments on AQI
dataset with RM (p = 0.3). Shown in Table 4, we observe that our causal discovery results are
the closest to the distance matrix, demonstrating the superior performance of CUTS+. The
ablation study by comparing CUTS+ with CUTS and “CUTS w C2FD” shows that both C2FD
and MPGNN contribute to the performance gain.

However, we would like to clarify that this quantitative experiment may not fully reflect the
true causal discovery performance since the distance matrix may not be the actual causal graph.

B.5 Causal Discovery Example
To showcase that our CUTS+ largely increases the scalability of time-series causal discovery, we
plot the discovered causal graphs and corresponding AUROC during the training process, shown
in Figure 1. We can see that when the number of groups (Ng) doubles every 20 epochs, the causal
graph progresses from being coarse to becoming more detailed. Additionally, the rate of increase
for the AUROC is higher after the groups have been split. This shows that CUTS+ possesses
a training process from coarse to fine, which is why the final causal graph can be learned with
high accuracy. Moreover, with C2FD and MPGNN, the parameters to be optimized are greatly
reduced, which further assists the learning process.
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Figure 1: An example for causal discovery training process on a Lorenz-96 dataset (N = 256, p =
0.3).

Table 4: Performance comparison of CUTS+ on AQI dataset. Ground truth causal graph is set
as the binarized distance matrix. We do not include PCMCI, LCCM, and SCGL because the
time costs for them on AQI dataset are extremely long.

Met. Imput. AQI with RM (N = 128) AQI with RBM (N = 128) AQI (N = 128)
p = 0.3 p = 0.6 pblk = 0.15% pblk = 0.3% No missing

NGC ZOH 0.5461 ± 0.0062 0.5578 ± 0.0167 0.5472 ± 0.0168 0.5444 ± 0.0157 0.5413 ± 0.0000TimesNet 0.5282 ± 0.0039 0.5157 ± 0.0052 0.5457 ± 0.0167 0.5403 ± 0.0146

eSRU ZOH 0.8315 ± 0.0056 0.8190 ± 0.0050 0.8221 ± 0.0050 0.8108 ± 0.0056 0.8304 ± 0.0053TimesNet 0.7974 ± 0.0046 0.6811 ± 0.0022 0.8197 ± 0.0030 0.8098 ± 0.0022

NGM 0.5112 ± 0.0150 0.4937 ± 0.0174 0.5182 ± 0.0203 0.5063 ± 0.0130 0.5087 ± 0.0090

CUTS 0.8508 ± 0.0009 0.8600 ± 0.0027 0.8385 ± 0.0017 0.8402 ± 0.0011 0.8318 ± 0.0007

CUTS w C2FD 0.8599 ± 0.0017 0.8670 ± 0.0027 0.8506 ± 0.0011 0.8520 ± 0.0019 0.8542 ± 0.0004

CUTS+ 0.8815 ± 0.0033 0.8788 ± 0.0044 0.8702 ± 0.0016 0.8701 ± 0.0022 0.8722 ± 0.0013

C Implementation Details

C.1 Computation
We conduct experiments on a PC with Intel Core CPUs and NVIDIA GeForce RTX 3090 GPUs.
For baseline algorithms such as PCMCI and LCCM, the computation time is extremely long
when N ≥ 128 (more than 12 hrs each task), so we only perform comparisons with PCMCI and
LCCM Dream-3 datasets.

C.2 Datasets
The VAR and Lorenz-96 datasets support setting N . To ensure the numbers of causal parents for
each time-series in VAR are roughly the same when N changes, the sparsity of the causal matrix
is set as 0.2, 0.1, 0.05, 0.03, 0.015, 0.008 for N = 16 ∼ 512, respectively.
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Table 5: Experiments on the performance across a large range of parameters.

Param. Varying λ
10−2 10−3 10−4

Lorenz 0.9984 ± 0.0002 0.9986 ± 0.0004 0.9986 ± 0.0004

Param. Varying Ng

16 32 64

VAR 0.9907 ± 0.0008 0.9893 ± 0.0100 0.9847 ± 0.0128

Table 6: Experiments on varying σ of additive noise in VAR and chaotic constant F in Lorenz-96.
The performance only decreases slightly with noise level.

Noise Lorenz-96, varying F
10 20 40

Score 0.9984 ± 0.0002 0.9970 ± 0.0009 0.9664 ± 0.033

Noise VAR, varying σ
0 0.001 0.01

Score 0.9907 ± 0.0008 0.9917 ± 0.0038 0.9688 ± 0.0070

The 4 data missing scenarios used in the experiments are RM (p = 0.3/0.6) and RBM
(pblk = 0.15%/0.3%). We list the detailed parameter settings for these 4 data missing (and
settings for no missing) in Table 7.

Table 7: Parameter settings for our 4 types of data missing and no missing.

Setting p pblk Lmin Lmax

No missing 0 0 / /
RM p = 0.3 0.3 0 / /
RM p = 0.6 0.6 0 / /

RBM Pblk = 0.15% 0.1 0.0015 12 48
RBM Pblk = 0.3% 0.1 0.003 12 48

Air Quality (AQI) is a dataset of several air quality features (such as PM2.5, SO2, NO2) from
437 monitoring stations spread across 43 Chinese cities1, with an hourly measurement over one
year. We consider PM2.5 pollution index in the dataset, which has minimal missing values among
all the features. Those 437 stations can be divided into two parts, respectively distributed in City
Cluster A centered around Beijing, and City Cluster B centered around Shenzhen. Here we only
use the Cluster B part centered around Shenzhen, which has a lower variance. The total length
of the dataset is L = 8760 and the number of nodes is N = 163.

C.3 Details for Our Approach
We show the key parameters of CUTS+ in Table 8 and discuss some details for implementation
in the following.

1https://www.microsoft.com/en-us/research/project/urban-computing/
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Sliding Window Imputation. For every batch during training, we extract data from a
defined temporal window. Then, predictions are performed at each temporal point by utilizing
data from historical data. The predicted values gradually replace the missing entries in the
original time-series data through the use of the following equation:

x̃
(m+1)
t,i =

{
(1− α)x̃

(m)
t,i + αx̂

(m)
t,i ot,i = 0 and m ≥ n1

x̃0
t,i ot,i = 1 or m < n1

(16)

Here m indexes the iteration steps and the update begin after n1 epochs. x̃
(0)
t,i denotes the initial

data (unobserved entries filled with zero order holder). α is selected to prevent the abrupt change
of imputed data. For the missing points, their predicted value x̂

(m)
t,i is unsupervised with L but

updated to x̃
(m)
t,i to obtain a “delayed” error in causal graph inference [3].

Parameter Tuning. The hyper-parameters are tuned with grid search on the validation
dataset (independently generated with different random seeds and the same size). We did the
same for baseline algorithms to maintain fairness.

Experiments for Time Costs. To test the time costs for cMLP / cLSTM and CUTS+,
we separately implement a simulated optimization process with only Prediction Stage. This
CPG and input time-series are randomly generated with Bernoulli and normal distribution. We
set the hyperparameters (e.g., layer numbers, size of the hidden layer) as the best-performing
combination on VAR datasets. The batch size is set to 128 for three models.

C.4 Baseline Methods
This work incorporates a lot of baseline methods. We briefly describe the implementation details
for reproducibility in the following and show key parameters in Table 9.

PCMCI. The code is from https://github.com/jakobrunge/tigramite. We use
ParCorr as conditional independence tests for all experiments. Although nonlinear tests, e.g.,
CMIKnn, and GPDC are available, but the computational cost is unacceptable for our high-
dimensional settings.

NGC. The code is from https://github.com/iancovert/Neural-GC. We use the cMLP
network because according to the original paper [4] cMLP achieves better performance, except
for Dream-3 dataset.

eSRU. The code is from https://github.com/sakhanna/SRU_for_GCI.
SCGL. The code is downloaded from link shared in its original paper [5].
LCCM. The code is from https://github.com/edebrouwer/latentCCM.
NGM. The code is from https://github.com/alexisbellot/Graphical-modelling-

continuous-time.
CUTS. The code is from https://github.com/jarrycyx/UNN. In the ablation study, we

add C2FD to CUTS, named “CUTS w C2FD”.
TimesNet. The code is from https://github.com/thuml/TimesNet.

D Broader Impacts
This work takes into account the high-dimensionality problem which is seldomly focused on by
previous works. CUTS+ paves the way toward causal discovery in real applications in which the
time-series often contain hundreds of variables. The possible application fields include medicine,
healthcare, social science, and finance.
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Table 8: Hyperparameters settings of CUTS+ in the aforementioned experiments.

Hyperparam. VAR Lorenz Dream-3 AQI

Batch size 128 128 128 128
Window size 10 1 5 24
Initial groups 16 32 25 20
Weight decay 0.003 0 0 0
GRU layers 1 1 1 1
Hidden size 32 32 32 32
Stage 1 Lr 10−3 → 10−4 10−3 → 10−4 10−3 → 10−4 10−3 → 10−4

Stage 2 Lr 10−2 → 10−3 10−2 → 10−3 10−2 → 10−3 10−3 → 10−4

Gumbel τ 1 → 0.1 1 → 0.1 1 → 0.1 1 → 0.1
λ 0.01 → 0.01 0.01 → 0.01 0.01 → 0.01 0.01 → 0.01

E Limitations
Our approach, CUTS+, is a Granger-causality-based causal discovery algorithm. A main limitation
of our CUTS+ is the gap between Granger causality and real causality. Granger causality may
fail when there exists latent confounders or sub-sampled causal effects, which are common in
real datasets. Moreover, our CUTS+ handle irregular time-series with missing data imputation
module and cannot directly use irregular inputs. The performance may be hampered when the
sampling frequency of each time-series is different. We focus on RM and RBM in the experiments,
which can be categorized into Missing Complete at Random (MCAR), a most common type
of data missing. However, there are more types of missing that are often considered in causal
inference literature [6].
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Table 9: Hyperparameters settings of the baseline causal discovery and data imputation algorithms.

Methods Params. VAR Lorenz Dream-3 AQI

PCMCI τmax / / 5 /
PCα / / 0.05 /

NGC
Learning rate 0.05 0.05 0.05 0.05

λridge 0.01 0.01 0.01 10−4

λ 0.02 → 0.2 0.02 → 0.2 0.01 → 0.1 0.0005 → 0.005

eSRU

µ1 0.1 0.1 0.7 0.1
Learning rate 0.01 0.01 0.001 0.01

Batch size 250 250 100 100
Epochs 2000 2000 2000 500

SCGL
Epochs 50 50 50 /

Batch size 32 32 32 /
Window 3 3 3 /

LCCM
Epochs / / 50 /

Batch size / / 10 /
Hidden size / / 20 /

NGM
Steps 2000 2000 2000 500

Horizon 5 5 5 5
GL_reg 0.05 0.05 0.05 0.05

CUTS

n1 5 50 20 10
n2 15 150 30 40
n3 30 300 50 50
α 0.1 0.01 0.01 0.1

Input step 3 1 5 1
Batch size 128 128 128 128

Hidden features 128 128 128 128
Network layers 3 3 5 3
Weight decay 0.001 0 0 0
Stage 1 Lr 10−4 → 10−5 10−4 → 10−5 10−4 → 10−5 10−4 → 10−5

Stage 2 Lr 10−2 → 10−3 10−2 → 10−3 10−2 → 10−3 10−3 → 10−4

Gumbel τ 1 → 0.1 1 → 0.1 1 → 0.1 1 → 0.1
λ 0.1 0.1 5 0.1
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